Projected landings and stock biomass under different fishing mortality scenarios for Atlantic Herring.

Prepared for the Herring PDT
By

Steven Correia ${ }^{1}$ and Gary Shepherd ${ }^{2}$
Herring PDT
September 8, 2009
${ }^{1}$ Massachusetts Division of Marine Fisheries, New Bedford, MA.
${ }^{2}$ National Marine Fisheries Service. Northeast Fisheries Science Center, Woods Hole, MA

At the request of the NEFMC's Statistical and Science Committee (SSC), I have run six projections for six fishing mortality scenarios. The projections were run using the NFT AGEPRO version 3.3.8. The PDT set $\mathrm{F}=0.16$ for 2009 for all projections, corresponding to the median projected F from using an ${ }^{1}$ assumed $90,029 \mathrm{mt}$ of landings. For projections with retrospective adjustments, assumed landings of 90,029 metric tons were assumed for 2009. From 2010 through 2038, the six scenarios for fishing mortality were (FMSY (0.27), Frebuild (0.153), Fstatus quo (0.14), $75 \%$ status quo (.105), $50 \%$ status quo (0.07) and $\mathrm{F}=0$. Projected biomass and the 5th and 95th percentiles are shown in Figure 1.

Note that under a Fmsy strategy, long-term biomass stays below Bmsy, and long-term landings remains below MSY. Clearly an inconsistency between the reference points derived in the Fox surplus production model and long-term projections at Fmsy exists. Under Frebuild, projected biomass reaches Bmsy, but long-term landings remain below MSY.

## Projected landings

The median and $5^{\text {th }}$ and $95^{\text {th }}$ percentiles from the distribution of projected landings for five mortality scenarios are shown in Figure 2. A range of percentiles for 2010-2012 for projected landings are shown in Table 1.

## Retrospective adjusted projected landings.

The SSC recommended that the average retrospective adjustments be applied to the projected landings. Restrospective adjustment values were derived from retrospective peels of the ASAP terminal year value back to 2001. Retrospective January 1 number at age were converted to stock biomass using mean weights at age provided in the Final ASAP model. Results from retrospective analysis of $2+$ stock biomass and abundance at age for 2-6+ are shown in Appendix Figure 1 (ratio of retrospective year: base) and Appendix Figure 2 (actual values) for 2001-2008.

The retrospective adjustments to the terminal year estimates were used as input to the AGEPRO projection model. The age specific retrospective adjustment was calculated based on the ratio of the January 1 numbers at age for 2008 (base) to the tips of terminal retrospective years 2007 through 2001. For example, age 2 in 2001 retrospective peel was estimated at 1849 compared to the 2008 terminal year estimate of 1033, giving an adjustment ratio of 0.55 for that peel compared with the terminal year 2008. The average ratio's for all retrospective peels (2001-2007) for age 2 was 0.72 , with a range ( 0.32 to 1.09). The retrospective correction factors are shown in Table 2. The average ratio was applied to the retrospective adjusted projected landings for the Fmsy and Frebuild runs presented in Table 3.

[^0]Retrospective adjustments were not applied to the Fstatus quo, 75\% Fstatus quo or 50\% F status quo projections. The use of these fishing mortality streams was considered as an alternate method to retrospective adjustment for accounting for scientific uncertainty and further adjustments could be considered excessively precautionary.

## Additional corrections for other sources of uncertainty

The retrospective pattern in the herring assessment is the largest source of uncertainty, swamping the uncertainty from model formulation and distribution of uncertainty around terminal year estimates. Despite the retrospective pattern, fishing mortality has remained below $\mathrm{F}_{\text {msy }}$. Overfishing has not occurred since 1989 and age $2^{+}$stock biomass has remained above $\mathrm{B}_{\text {msy }}$ since 1996 (Appendix Figure 3). The terminal 2008 year point estimate is at $97 \%$ of $B_{\text {msy }}$. Despite the retrospective pattern and model formulation uncertainty, the view of stock status has not changed: biomass has remain relatively stable at a high biomass since the mid-1990's and fishing mortality rates have been below $\mathrm{F}_{\text {msy }}$ (Appendix Figure 4). Fishing mortality has averaged 0.17 since 1998, approximately $63 \%$ of $\mathrm{F}_{\text {msy }}$, and $85 \%$ of the natural mortality rate assumed in the assessment (0.20). A retrospective adjusted 2008 F is at $95 \%$ of Fmsy and the 2008 January $1^{\text {st }} 2^{+}$biomass is at $62 \%$ of $B_{\text {msy }}$.

Causes for the retrospective pattern are unknown in the case of Atlantic herring, but general causes can include misspecification of catch, ageing problems, changes in M , changes in survey catchability, differences in fishery selectivity, difference among stock components or across time, etc. The range of uncertainty in the retrospective analysis in the final model encompasses the range of uncertainty found in the various model formulations. The PDT concludes that the retrospective adjustment should provide adequate precaution for these scientific uncertainties.

The Atlantic herring stock is a complex composed of several spawning components, which mix at different rates during the year. Annual catch limits are set for four management areas ( $1 \mathrm{~A}, 1 \mathrm{~B}, 2$, and 3 ). The risk of these ACL to the inshore component of the stock will be analyzed by the Plan Development Team during the ACL setting process.


Figure 1. Projected Atlantic Herring total $2^{+}$median biomass under six fishing mortality scenarios. F in 2009 was set at $\mathbf{0 . 1 6}$ for all projections. Gray line is Bmsy estimate ( 670.6 thousand metric tons) from 2009 TRAC assessment.


Figure 2. Projected landings under five fishing mortality scenarios for 2010-2038. Solid blue line is median, dashed lines are $5^{\text {th }}$ and $95{ }^{\text {th }}$ percentiles of the distribution of projected landings. Gray line is MSY (178.374 thousand metric tons). Solid red line is average total landings from 1998 to 2008 (115.5 thousand metric tons).

Table 1. Percentiles of projected landings distribution for five fishing mortality scenarios for Atlantic sea herring . Landings are in thousands of metric tons. Landings are not adjusted for retrospective pattern in January 1 stock biomass. All mortality scenarios use $\mathrm{F}=\mathbf{0 . 1 6}$ for 2009.

|  | Percentiles of projected landings distribution |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run | Year | 1\% | 5\% | 10\% | 25\% | 50\% | 75\% | 90\% | 95\% | 99\% | F |
| $\mathrm{F}_{\text {msy }}$ | 2010 | 105.477 | 115.066 | 120.727 | 131.296 | 144.996 | 160.488 | 176.931 | 189.598 | 221.021 | 0.27 |
|  | 2011 | 89.868 | 99.955 | 106.437 | 118.597 | 134.493 | 153.115 | 175.320 | 194.622 | 226.376 | 0.27 |
|  | 2012 | 76.543 | 88.241 | 95.355 | 109.068 | 126.966 | 148.563 | 175.386 | 193.975 | 226.817 | 0.27 |
| $F_{\text {rebuild }}$ | 2010 | 63.118 | 68.856 | 72.244 | 78.568 | 86.767 | 96.037 | 105.877 | 113.457 | 132.260 | 0.15 |
|  | 2011 | 59.803 | 66.443 | 70.663 | 78.522 | 88.833 | 100.856 | 115.014 | 127.174 | 148.682 | 0.15 |
|  | 2012 | 55.894 | 63.877 | 68.796 | 78.135 | 90.389 | 105.006 | 123.082 | 135.953 | 158.141 | 0.15 |
| $\mathrm{F}_{\text {status }}$ quo | 2010 | 58.110 | 63.393 | 66.512 | 72.334 | 79.882 | 88.417 | 97.476 | 104.455 | 121.766 | 0.14 |
|  | 2011 | 55.727 | 61.899 | 65.808 | 73.114 | 82.692 | 93.862 | 107.006 | 118.236 | 138.351 | 0.14 |
|  | 2012 | 52.604 | 60.073 | 64.691 | 73.412 | 84.878 | 98.532 | 115.343 | 127.401 | 148.275 | 0.14 |
| $75 \% \mathrm{~F}_{\text {status }}$ quo | 2010 | 44.310 | 48.339 | 50.717 | 55.157 | 60.912 | 67.420 | 74.328 | 79.649 | 92.850 | 0.105 |
|  | 2011 | 43.898 | 48.718 | 51.765 | 57.476 | 64.968 | 73.695 | 83.900 | 92.566 | 108.666 | 0.105 |
|  | 2012 | 42.571 | 48.530 | 52.186 | 59.141 | 68.288 | 79.127 | 92.425 | 102.038 | 118.646 | 0.105 |
| $50 \% \mathrm{~F}_{\text {status }}$ quo | 2010 | 30.037 | 32.767 | 34.379 | 37.389 | 41.290 | 45.702 | 50.384 | 53.992 | 62.940 | 0.07 |
|  | 2011 | 30.739 | 34.094 | 36.210 | 40.182 | 45.383 | 51.456 | 58.516 | 64.487 | 75.853 | 0.07 |
|  | 2012 | 30.655 | 34.866 | 37.470 | 42.382 | 48.859 | 56.533 | 65.892 | 72.718 | 84.441 | 0.07 |

Table 2. Retrospective adjustment ratio's for January 1st $\mathbf{2}^{+}$total stock biomass and for January 1 abundance at age.

| Retrospective peel year | Retro adju F | stment <br> 2+ <br> biomass | Retrospec age 2 | tive adjus <br> age 3 | ent for Jan age 4 | ary 1 numbe age 5 | s at age age 6+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | 1.96 | 0.60 | 0.55 | 0.60 | 0.82 | 0.55 | 0.47 |
| 2002 | 2.28 | 0.48 | 0.32 | 0.48 | 0.49 | 0.57 | 0.46 |
| 2003 | 1.99 | 0.45 | 0.70 | 0.45 | 0.55 | 0.51 | 0.49 |
| 2004 | 2.04 | 0.50 | 0.49 | 0.50 | 0.56 | 0.61 | 0.50 |
| 2005 | 1.61 | 0.59 | 1.09 | 0.59 | 0.66 | 0.68 | 0.60 |
| 2006 | 1.41 | 0.73 | 1.08 | 0.73 | 0.68 | 0.73 | 0.70 |
| 2007 | 1.17 | 1.05 | 0.79 | 1.05 | 0.84 | 0.88 | 0.87 |
| 2008 |  |  |  |  | Terminal year of assessment |  |  |
| mean | 1.78 | 0.63 | 0.72 | 0.63 | 0.66 | 0.65 | 0.58 |

Table3. Percentiles of projected landings distribution for five fishing mortality scenarios for Atlantic sea herring. Landings are in thousands of metric tons. Landings are adjusted for retrospective pattern in January 1 numbers at age for 2008-2001. All projection runs used assumed landings of 90,029 tons for 2009.

|  | Percentiles of projected landings distribution |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run | YEAR | 1\% | 5\% | 10\% | 25\% | 50\% | 75\% | 90\% | 95\% | 99\% | F |
| $\mathrm{F}_{\text {msy }}$ | 2010 | 59.239 | 66.918 | 71.535 | 80.311 | 92.135 | 105.645 | 120.093 | 132.393 | 165.291 | 0.27 |
|  | 2011 | 56.086 | 65.178 | 71.098 | 82.436 | 97.690 | 115.401 | 137.256 | 157.285 | 188.825 | 0.27 |
|  | 2012 | 53.830 | 64.954 | 71.842 | 85.318 | 102.943 | 124.288 | 151.123 | 169.699 | 202.095 | 0.27 |
| $F_{\text {rebuild }}$ | 2010 | 35.449 | 40.044 | 42.807 | 48.059 | 55.134 | 63.219 | 71.864 | 79.225 | 98.911 | 0.15 |
|  | 2011 | 37.209 | 43.089 | 46.931 | 54.232 | 64.062 | 75.535 | 89.446 | 101.803 | 123.18 | 0.15 |
|  | 2012 | 38.754 | 46.286 | 51.086 | 60.182 | 72.209 | 86.628 | 104.745 | 117.591 | 139.513 | 0.15 |

## Appendix 1. Additional tables and figures.

## Data sources for projections:

Projections were run by Gary Shepherd on 8.31.2009 using the original input files (FMSYLONGTERM2.in) and bootstrap input files (final2009amcmc.bsn). Agepro 3.3.8 was used to run the projections.

Projected recruitment was drawn from the 42 year timeseries of age 2 recruits in the assessments using an empirical model in the projections. .

Terminal year January 1 abundance at age estimates for 2009. January 2009 age 2 recruits are drawn from empirical distribution of recruits from ASAP model.

Mean weights (January 1, catch weights, spawner weights) were based on average of 20062008.

Appendix Table 1.

|  | Age 2 | Age 3 | Age 4 | Age 5 | Age 6+ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Jan 1 weights | 0.034 | 0.067 | 0.102 | 0.133 | 0.177 |
| Catch weights | 0.049 | 0.090 | 0.121 | 0.147 | 0.177 |
| Spawner weights | 0.049 | 0.090 | 0.121 | 0.147 | 0.177 |
| Maturity | 0.21 | 0.86 | 0.93 | 0.98 | 1 |
| Natural mortality | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| Fishery selectivity | 1 | 1 | 1 | 1 | 1 |

Appendix Figures and Tables.


Appendix Figure 1. Result of retrospective analysis using years 2001-2008 for 2+ biomass and abundances for ages 2 through $6+$. Retrospective measured as ratio of retrospective year to terminal year.


Appendix Figure 2. Retrospective pattern for either 2+ January 1 biomass ( 000 ’s mt) or abundance at age (millions)

The following tables are provided in case the PDT would wish to use the $\mathrm{F}_{2009}$ as the status quo rather than $\mathrm{F}_{2000}$. In addition, a run that uses the 2008 catch ( $90,029 \mathrm{mt}$ ) as a constant catch strategy for 2010-2012.Projection began with $\mathrm{F}=0.16$ in 2009.

Appendix Table 2. Percentiles of projected landings based on $\mathrm{F}_{2009}, 75 \%$ of $\mathrm{F}_{2009}$ and $50 \%$ of $\mathrm{F}_{2009}$. Not adjusted for retrospective.

|  | Percentiles of projected landings distribution |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run | Year | 1\% | 5\% | 10\% | 25\% | 50\% | 75\% | 90\% | 95\% | 99\% | F |
| $\mathrm{F}_{2009}$ | 2010 | 65.789 | 71.770 | 75.301 | 81.893 | 90.438 | 100.101 | 110.357 | 118.258 | 137.857 | 0.16 |
|  | 2011 | 61.929 | 68.820 | 73.196 | 81.353 | 92.050 | 104.507 | 119.207 | 131.899 | 154.126 | 0.16 |
|  | 2012 | 57.559 | 65.830 | 70.899 | 80.550 | 93.216 | 108.344 | 127.028 | 140.377 | 163.294 | 0.16 |
| $75 \% \mathrm{~F}_{2009}$ | 2010 | 50.282 | 54.853 | 57.551 | 62.589 | 69.121 | 76.506 | 84.344 | 90.383 | 105.362 | 0.12 |
|  | 2011 | 49.124 | 54.539 | 57.964 | 64.372 | 72.778 | 82.582 | 94.072 | 103.881 | 121.696 | 0.12 |
|  | 2012 | 47.1 | 53.722 | 57.804 | 65.553 | 75.734 | 87.797 | 102.642 | 113.361 | 131.877 | 0.12 |
|  | 2010 | 34.164 | 37.270 | 39.103 | 42.527 | 46.964 | 51.982 | 57.308 | 61.411 | 71.589 | 0.08 |
| 50\% $\mathrm{F}_{2009}$ | 2011 | 34.639 | 38.427 | 40.815 | 45.305 | 51.179 | 58.031 | 66.000 | 72.776 | 85.562 | 0.08 |
|  | 2012 | 34.270 | 39.003 | 41.931 | 47.444 | 54.721 | 63.342 | 73.850 | 81.523 | 94.720 | 0.08 |

Appendix Table 3. Distribution of F under constant catch strategy based on $\mathrm{F}=0.16$ in 2009 and catch ${ }_{2008}=90,029 \mathrm{mt}$ thereafter. Not adjusted for retrospective bias.

|  | Percentiles of projected F distribution |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run | YEAR | 1\% | 5\% | 10\% | 25\% | 50\% | 75\% | 90\% | 95\% | 99\% | Catch |
| Constant catch | 2010 | 0.102 | 0.119 | 0.128 | 0.143 | 0.159 | 0.177 | 0.194 | 0.205 | 0.226 | 90.029 |
|  | 2011 | 0.086 | 0.103 | 0.115 | 0.134 | 0.156 | 0.180 | 0.206 | 0.222 | 0.255 | 90.029 |
|  | 2012 | 0.078 | 0.093 | 0.105 | 0.127 | 0.153 | 0.184 | 0.219 | 0.242 | 0.294 | 90.029 |



Appendix Figure 3. Left panel: Timeseries of fully recruited F from TRAC 2009 assessment. Gray line is updated Fmsy (0.27). Right panel: Timeseries of January $1^{\text {st }} 2_{+}$biomass. Solid red line is $B_{m s y}$. Broken red line is Biomass threshold ( $1 / 2 \mathrm{~B}_{\text {msy }}$ ).

+ indicates retrospective adjusted 2008 value based on average of 7 retrospective peels. For 2007-2009, quota was set on a target fishing mortality rate $=0.31$, representing the Fmsy estimate at the time).


Appendix Figure 4. Phase plot of $2^{+}$January 1 biomass against fully recruited F for Atlantic herring in the 2009 TRAC assessment. Gray solid line is Fmsy. Red solid line is Bmsy. Broken red line is $1 / 2$ Bmsy. Plus sign is retrospective adjusted 2008 values for biomass and fishing mortality based on 7 year retrospective peels.


Appendix Figure 5. Timeseries of Atlantic herring landings 1967-2008. Solid red line is MSY estimate from TRAC 2009.


[^0]:    ${ }^{1}$ Status quo refers to the fishing mortality rate in 2008

